Question 644165
Find cos theta, tan theta and sec theta, if sin theta = -8/17 and 180< theta < 270
**
use x for theta
O for opposite side
A for adjacent side
H for hypotenuse
working with reference angle x in quadrant III where sin and cos<0
..
sinx=-8/17=O/H
O=-8
H=17
By the Pythagorean Theorem
A=-&#8730;(H^2-O^2)=-&#8730;(17^2-8^2)=-&#8730;(289-64)=-&#8730;225=-15
cosx=A/H=-15/17 (in quadrant III where cos<0)
tanx=O/A=-8/-15=8/15 (in quadrant III where tan>0)
secx=H/A=-17/15 (in quadrant III where sec<0)
..
An alternate method is to do it algebraically:
sin^2x+cos^2x=1
cos^2x=1-sin^2x
cosx=&#8730;(1-sin^2x)=&#8730;(1-(8/17)^2)=&#8730;(1-64/289)=&#8730;(225/289=15/17
cosx=-15/17 in quadrant III
secx=-17/15
tanx=sinx/cosx=8/15