Question 643555


{{{(3k+4)^2}}} Start with the given expression.



{{{(3k+4)(3k+4)}}} Expand. Remember something like {{{x^2=x*x}}}.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(3k)+4)(highlight(3k)+4)}}} Multiply the <font color="red">F</font>irst terms:{{{(3*k)*(3*k)=9*k^2}}}.



{{{(highlight(3k)+4)(3k+highlight(4))}}} Multiply the <font color="red">O</font>uter terms:{{{(3*k)*(4)=12*k}}}.



{{{(3k+highlight(4))(highlight(3k)+4)}}} Multiply the <font color="red">I</font>nner terms:{{{(4)*(3*k)=12*k}}}.



{{{(3k+highlight(4))(3k+highlight(4))}}} Multiply the <font color="red">L</font>ast terms:{{{(4)*(4)=16}}}.



---------------------------------------------------

So we have the terms: {{{9*k^2}}}, {{{12*k}}}, {{{12*k}}}, {{{16}}} 



{{{9*k^2+12*k+12*k+16}}} Now add every term listed above to make a single expression.



{{{9k^2+24k+16}}} Now combine like terms.



So {{{(3k+4)^2}}} FOILs to {{{9k^2+24k+16}}}.



In other words, {{{(3k+4)^2=9k^2+24k+16}}}.