Question 642453
Looking at the expression {{{28m^2-41mn+15n^2}}}, we can see that the first coefficient is {{{28}}}, the second coefficient is {{{-41}}}, and the last coefficient is {{{15}}}.



Now multiply the first coefficient {{{28}}} by the last coefficient {{{15}}} to get {{{(28)(15)=420}}}.



Now the question is: what two whole numbers multiply to {{{420}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-41}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{420}}} (the previous product).



Factors of {{{420}}}:

1,2,3,4,5,6,7,10,12,14,15,20,21,28,30,35,42,60,70,84,105,140,210,420

-1,-2,-3,-4,-5,-6,-7,-10,-12,-14,-15,-20,-21,-28,-30,-35,-42,-60,-70,-84,-105,-140,-210,-420



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{420}}}.

1*420 = 420
2*210 = 420
3*140 = 420
4*105 = 420
5*84 = 420
6*70 = 420
7*60 = 420
10*42 = 420
12*35 = 420
14*30 = 420
15*28 = 420
20*21 = 420
(-1)*(-420) = 420
(-2)*(-210) = 420
(-3)*(-140) = 420
(-4)*(-105) = 420
(-5)*(-84) = 420
(-6)*(-70) = 420
(-7)*(-60) = 420
(-10)*(-42) = 420
(-12)*(-35) = 420
(-14)*(-30) = 420
(-15)*(-28) = 420
(-20)*(-21) = 420


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-41}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>420</font></td><td  align="center"><font color=black>1+420=421</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>210</font></td><td  align="center"><font color=black>2+210=212</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>140</font></td><td  align="center"><font color=black>3+140=143</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>105</font></td><td  align="center"><font color=black>4+105=109</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>84</font></td><td  align="center"><font color=black>5+84=89</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>70</font></td><td  align="center"><font color=black>6+70=76</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>7+60=67</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>10+42=52</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>35</font></td><td  align="center"><font color=black>12+35=47</font></td></tr><tr><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>14+30=44</font></td></tr><tr><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>15+28=43</font></td></tr><tr><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>20+21=41</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-420</font></td><td  align="center"><font color=black>-1+(-420)=-421</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-210</font></td><td  align="center"><font color=black>-2+(-210)=-212</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-140</font></td><td  align="center"><font color=black>-3+(-140)=-143</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-105</font></td><td  align="center"><font color=black>-4+(-105)=-109</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-84</font></td><td  align="center"><font color=black>-5+(-84)=-89</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-70</font></td><td  align="center"><font color=black>-6+(-70)=-76</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>-7+(-60)=-67</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>-10+(-42)=-52</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-35</font></td><td  align="center"><font color=black>-12+(-35)=-47</font></td></tr><tr><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-14+(-30)=-44</font></td></tr><tr><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>-15+(-28)=-43</font></td></tr><tr><td  align="center"><font color=red>-20</font></td><td  align="center"><font color=red>-21</font></td><td  align="center"><font color=red>-20+(-21)=-41</font></td></tr></table>



From the table, we can see that the two numbers {{{-20}}} and {{{-21}}} add to {{{-41}}} (the middle coefficient).



So the two numbers {{{-20}}} and {{{-21}}} both multiply to {{{420}}} <font size=4><b>and</b></font> add to {{{-41}}}



Now replace the middle term {{{-41mn}}} with {{{-20mn-21mn}}}. Remember, {{{-20}}} and {{{-21}}} add to {{{-41}}}. So this shows us that {{{-20mn-21mn=-41mn}}}.



{{{28m^2+highlight(-20mn-21mn)+15n^2}}} Replace the second term {{{-41mn}}} with {{{-20mn-21mn}}}.



{{{(28m^2-20mn)+(-21mn+15n^2)}}} Group the terms into two pairs.



{{{4m(7m-5n)+(-21mn+15n^2)}}} Factor out the GCF {{{4m}}} from the first group.



{{{4m(7m-5n)-3n(7m-5n)}}} Factor out {{{-3n}}} from the second group.



{{{(4m-3n)(7m-5n)}}} Factor out {{{7m-5n}}}

-------------------------------------------------------


So {{{28m^2-41mn+15n^2}}} completely factors to {{{(4m-3n)(7m-5n)}}}