Question 642394
{{{70s^2-165sr+90r^2}}} Start with the given expression.



{{{5(14s^2-33rs+18r^2)}}} Factor out the GCF {{{5}}}.



Now let's try to factor the inner expression {{{14s^2-33rs+18r^2}}}


---------------------------------------------------------------



Looking at the expression {{{14s^2-33rs+18r^2}}}, we can see that the first coefficient is {{{14}}}, the second coefficient is {{{-33}}}, and the last coefficient is {{{18}}}.



Now multiply the first coefficient {{{14}}} by the last coefficient {{{18}}} to get {{{(14)(18)=252}}}.



Now the question is: what two whole numbers multiply to {{{252}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-33}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{252}}} (the previous product).



Factors of {{{252}}}:

1,2,3,4,6,7,9,12,14,18,21,28,36,42,63,84,126,252

-1,-2,-3,-4,-6,-7,-9,-12,-14,-18,-21,-28,-36,-42,-63,-84,-126,-252



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{252}}}.

1*252 = 252
2*126 = 252
3*84 = 252
4*63 = 252
6*42 = 252
7*36 = 252
9*28 = 252
12*21 = 252
14*18 = 252
(-1)*(-252) = 252
(-2)*(-126) = 252
(-3)*(-84) = 252
(-4)*(-63) = 252
(-6)*(-42) = 252
(-7)*(-36) = 252
(-9)*(-28) = 252
(-12)*(-21) = 252
(-14)*(-18) = 252


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-33}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>252</font></td><td  align="center"><font color=black>1+252=253</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>126</font></td><td  align="center"><font color=black>2+126=128</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>84</font></td><td  align="center"><font color=black>3+84=87</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>63</font></td><td  align="center"><font color=black>4+63=67</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>6+42=48</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>7+36=43</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>9+28=37</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>12+21=33</font></td></tr><tr><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>14+18=32</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-252</font></td><td  align="center"><font color=black>-1+(-252)=-253</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-126</font></td><td  align="center"><font color=black>-2+(-126)=-128</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-84</font></td><td  align="center"><font color=black>-3+(-84)=-87</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-63</font></td><td  align="center"><font color=black>-4+(-63)=-67</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>-6+(-42)=-48</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-7+(-36)=-43</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>-9+(-28)=-37</font></td></tr><tr><td  align="center"><font color=red>-12</font></td><td  align="center"><font color=red>-21</font></td><td  align="center"><font color=red>-12+(-21)=-33</font></td></tr><tr><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-14+(-18)=-32</font></td></tr></table>



From the table, we can see that the two numbers {{{-12}}} and {{{-21}}} add to {{{-33}}} (the middle coefficient).



So the two numbers {{{-12}}} and {{{-21}}} both multiply to {{{252}}} <font size=4><b>and</b></font> add to {{{-33}}}



Now replace the middle term {{{-33rs}}} with {{{-12rs-21rs}}}. Remember, {{{-12}}} and {{{-21}}} add to {{{-33}}}. So this shows us that {{{-12rs-21rs=-33rs}}}.



{{{14s^2+highlight(-12rs-21rs)+18r^2}}} Replace the second term {{{-33rs}}} with {{{-12rs-21rs}}}.



{{{(14s^2-12rs)+(-21rs+18r^2)}}} Group the terms into two pairs.



{{{2s(7s-6r)+(-21rs+18r^2)}}} Factor out the GCF {{{2s}}} from the first group.



{{{2s(7s-6r)-3r(7s-6r)}}} Factor out {{{2s}}} from the second group.



{{{(2s-3r)(7s-6r)}}} Factor out {{{7s-6r}}}


--------------------------------------------------------------------------------------------


So {{{14s^2-33rs+18r^2}}} factors to {{{(2s-3r)(7s-6r)}}}


this means {{{5(14s^2-33rs+18r^2)}}} factors to {{{5(2s-3r)(7s-6r)}}}


So the final answer is {{{5(2s-3r)(7s-6r)}}}