Question 640957
find an equation of the specified hyperbola with center at the origin.
with given Foci : ( +-10,0) ; Asymptotes: y=+-3/4x
**
Give data shows this is a hyperbola with horizontal transverse axis.
Its standard form of equation: {{{(x-h)^2/a^2-(y-k)^2/b^2=1}}}, (h,k)=(x,y) coordinates of center
Given center: (0,0)
Given slope of asymptotes=±3/4
For hyperbolas with horizontal transverse axis, slope of asymptotes=b/a=3/4
3a=4b
b=3a/4
Given Foci=±10
c=10
c^2=100=a^2+b^2=a^2+(3a/4)^2
a^2+9a^2/16=100
LCD:16
16a^2+9a^2=1600
25a^2=1600
a^2=1600/25=64
b^2=9a^2/16=9*64/16=36
Equation of given hyperbola:
{{{x^2/a^2-y^2/b^2=1}}}
{{{x^2/64-y^2/36=1}}}