Question 640838
<font face="Times New Roman" size="+2">


First, rationalize your denominators:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \cos(\theta)\ =\ -\frac{1}{\sqrt{2}}\ =\ -\frac{1}{\sqrt{2}}\left(-\frac{\sqrt{2}}{\sqrt{2}\right)\ =\ -\frac{\sqrt{2}}{2}]


Do the same thing for your other equation.


Then look up the values on the unit circle:


<img src="http://www.math.ucsd.edu/~jarmel/math4c/Unit_Circle_Angles.png">


Remember, the *[tex \LARGE x]-coordinate of the point of intersection of the terminal ray with the unit circle is the value of the cosine and the *[tex \LARGE y]-coordinate is the value of the sine.


Since you haven't restricted the independent variable to a particular range, be sure to add *[tex \LARGE +\ 2k\pi\ \forall\ k\ \in\ \mathbb{Z}] to each of the two values you should get for each of your equations.


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>