Question 640704
I'm assuming you want to factor this.




Looking at the expression {{{35x^2+3xy-54y^2}}}, we can see that the first coefficient is {{{35}}}, the second coefficient is {{{3}}}, and the last coefficient is {{{-54}}}.



Now multiply the first coefficient {{{35}}} by the last coefficient {{{-54}}} to get {{{(35)(-54)=-1890}}}.



Now the question is: what two whole numbers multiply to {{{-1890}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{3}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-1890}}} (the previous product).



Factors of {{{-1890}}}:

1,2,3,5,6,7,9,10,14,15,18,21,27,30,35,42,45,54,63,70,90,105,126,135,189,210,270,315,378,630,945,1890

-1,-2,-3,-5,-6,-7,-9,-10,-14,-15,-18,-21,-27,-30,-35,-42,-45,-54,-63,-70,-90,-105,-126,-135,-189,-210,-270,-315,-378,-630,-945,-1890



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-1890}}}.

1*(-1890) = -1890
2*(-945) = -1890
3*(-630) = -1890
5*(-378) = -1890
6*(-315) = -1890
7*(-270) = -1890
9*(-210) = -1890
10*(-189) = -1890
14*(-135) = -1890
15*(-126) = -1890
18*(-105) = -1890
21*(-90) = -1890
27*(-70) = -1890
30*(-63) = -1890
35*(-54) = -1890
42*(-45) = -1890
(-1)*(1890) = -1890
(-2)*(945) = -1890
(-3)*(630) = -1890
(-5)*(378) = -1890
(-6)*(315) = -1890
(-7)*(270) = -1890
(-9)*(210) = -1890
(-10)*(189) = -1890
(-14)*(135) = -1890
(-15)*(126) = -1890
(-18)*(105) = -1890
(-21)*(90) = -1890
(-27)*(70) = -1890
(-30)*(63) = -1890
(-35)*(54) = -1890
(-42)*(45) = -1890


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{3}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-1890</font></td><td  align="center"><font color=black>1+(-1890)=-1889</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-945</font></td><td  align="center"><font color=black>2+(-945)=-943</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-630</font></td><td  align="center"><font color=black>3+(-630)=-627</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-378</font></td><td  align="center"><font color=black>5+(-378)=-373</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-315</font></td><td  align="center"><font color=black>6+(-315)=-309</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-270</font></td><td  align="center"><font color=black>7+(-270)=-263</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-210</font></td><td  align="center"><font color=black>9+(-210)=-201</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-189</font></td><td  align="center"><font color=black>10+(-189)=-179</font></td></tr><tr><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-135</font></td><td  align="center"><font color=black>14+(-135)=-121</font></td></tr><tr><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-126</font></td><td  align="center"><font color=black>15+(-126)=-111</font></td></tr><tr><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>-105</font></td><td  align="center"><font color=black>18+(-105)=-87</font></td></tr><tr><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>-90</font></td><td  align="center"><font color=black>21+(-90)=-69</font></td></tr><tr><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>-70</font></td><td  align="center"><font color=black>27+(-70)=-43</font></td></tr><tr><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-63</font></td><td  align="center"><font color=black>30+(-63)=-33</font></td></tr><tr><td  align="center"><font color=black>35</font></td><td  align="center"><font color=black>-54</font></td><td  align="center"><font color=black>35+(-54)=-19</font></td></tr><tr><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>42+(-45)=-3</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>1890</font></td><td  align="center"><font color=black>-1+1890=1889</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>945</font></td><td  align="center"><font color=black>-2+945=943</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>630</font></td><td  align="center"><font color=black>-3+630=627</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>378</font></td><td  align="center"><font color=black>-5+378=373</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>315</font></td><td  align="center"><font color=black>-6+315=309</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>270</font></td><td  align="center"><font color=black>-7+270=263</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>210</font></td><td  align="center"><font color=black>-9+210=201</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>189</font></td><td  align="center"><font color=black>-10+189=179</font></td></tr><tr><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>135</font></td><td  align="center"><font color=black>-14+135=121</font></td></tr><tr><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>126</font></td><td  align="center"><font color=black>-15+126=111</font></td></tr><tr><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>105</font></td><td  align="center"><font color=black>-18+105=87</font></td></tr><tr><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>90</font></td><td  align="center"><font color=black>-21+90=69</font></td></tr><tr><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>70</font></td><td  align="center"><font color=black>-27+70=43</font></td></tr><tr><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>63</font></td><td  align="center"><font color=black>-30+63=33</font></td></tr><tr><td  align="center"><font color=black>-35</font></td><td  align="center"><font color=black>54</font></td><td  align="center"><font color=black>-35+54=19</font></td></tr><tr><td  align="center"><font color=red>-42</font></td><td  align="center"><font color=red>45</font></td><td  align="center"><font color=red>-42+45=3</font></td></tr></table>



From the table, we can see that the two numbers {{{-42}}} and {{{45}}} add to {{{3}}} (the middle coefficient).



So the two numbers {{{-42}}} and {{{45}}} both multiply to {{{-1890}}} <font size=4><b>and</b></font> add to {{{3}}}



Now replace the middle term {{{3xy}}} with {{{-42xy+45xy}}}. Remember, {{{-42}}} and {{{45}}} add to {{{3}}}. So this shows us that {{{-42xy+45xy=3xy}}}.



{{{35x^2+highlight(-42xy+45xy)-54y^2}}} Replace the second term {{{3xy}}} with {{{-42xy+45xy}}}.



{{{(35x^2-42xy)+(45xy-54y^2)}}} Group the terms into two pairs.



{{{7x(5x-6y)+(45xy-54y^2)}}} Factor out the GCF {{{7x}}} from the first group.



{{{7x(5x-6y)+9y(5x-6y)}}} Factor out {{{9y}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(7x+9y)(5x-6y)}}} Combine like terms. Or factor out the common term {{{5x-6y}}}



===============================================================



Answer:



So {{{35x^2+3xy-54y^2}}} factors to {{{(7x+9y)(5x-6y)}}}.



In other words, {{{35x^2+3xy-54y^2=(7x+9y)(5x-6y)}}}.



Note: you can check the answer by expanding {{{(7x+9y)(5x-6y)}}} to get {{{35x^2+3xy-54y^2}}} or by graphing the original expression and the answer (the two graphs should be identical).