Question 640515


Looking at the expression {{{6x^2+17x-40}}}, we can see that the first coefficient is {{{6}}}, the second coefficient is {{{17}}}, and the last term is {{{-40}}}.



Now multiply the first coefficient {{{6}}} by the last term {{{-40}}} to get {{{(6)(-40)=-240}}}.



Now the question is: what two whole numbers multiply to {{{-240}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{17}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-240}}} (the previous product).



Factors of {{{-240}}}:

1,2,3,4,5,6,8,10,12,15,16,20,24,30,40,48,60,80,120,240

-1,-2,-3,-4,-5,-6,-8,-10,-12,-15,-16,-20,-24,-30,-40,-48,-60,-80,-120,-240



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-240}}}.

1*(-240) = -240
2*(-120) = -240
3*(-80) = -240
4*(-60) = -240
5*(-48) = -240
6*(-40) = -240
8*(-30) = -240
10*(-24) = -240
12*(-20) = -240
15*(-16) = -240
(-1)*(240) = -240
(-2)*(120) = -240
(-3)*(80) = -240
(-4)*(60) = -240
(-5)*(48) = -240
(-6)*(40) = -240
(-8)*(30) = -240
(-10)*(24) = -240
(-12)*(20) = -240
(-15)*(16) = -240


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{17}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-240</font></td><td  align="center"><font color=black>1+(-240)=-239</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-120</font></td><td  align="center"><font color=black>2+(-120)=-118</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-80</font></td><td  align="center"><font color=black>3+(-80)=-77</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>4+(-60)=-56</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-48</font></td><td  align="center"><font color=black>5+(-48)=-43</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>6+(-40)=-34</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>8+(-30)=-22</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>10+(-24)=-14</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>12+(-20)=-8</font></td></tr><tr><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-16</font></td><td  align="center"><font color=black>15+(-16)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>240</font></td><td  align="center"><font color=black>-1+240=239</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>120</font></td><td  align="center"><font color=black>-2+120=118</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>80</font></td><td  align="center"><font color=black>-3+80=77</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>-4+60=56</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>48</font></td><td  align="center"><font color=black>-5+48=43</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>-6+40=34</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-8+30=22</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>-10+24=14</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-12+20=8</font></td></tr><tr><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>16</font></td><td  align="center"><font color=black>-15+16=1</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{17}}}. So {{{6x^2+17x-40}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{6x^2+17x-40}}} doesn't factor at all (over the rational numbers).



So {{{6x^2+17x-40}}} is prime.