Question 640411


{{{12x^3+8x^2-20x}}} Start with the given expression.



{{{4x(3x^2+2x-5)}}} Factor out the GCF {{{4x}}}.



Now let's try to factor the inner expression {{{3x^2+2x-5}}}



---------------------------------------------------------------



Looking at the expression {{{3x^2+2x-5}}}, we can see that the first coefficient is {{{3}}}, the second coefficient is {{{2}}}, and the last term is {{{-5}}}.



Now multiply the first coefficient {{{3}}} by the last term {{{-5}}} to get {{{(3)(-5)=-15}}}.



Now the question is: what two whole numbers multiply to {{{-15}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{2}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-15}}} (the previous product).



Factors of {{{-15}}}:

1,3,5,15

-1,-3,-5,-15



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-15}}}.

1*(-15) = -15
3*(-5) = -15
(-1)*(15) = -15
(-3)*(5) = -15


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{2}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>1+(-15)=-14</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>3+(-5)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-1+15=14</font></td></tr><tr><td  align="center"><font color=red>-3</font></td><td  align="center"><font color=red>5</font></td><td  align="center"><font color=red>-3+5=2</font></td></tr></table>



From the table, we can see that the two numbers {{{-3}}} and {{{5}}} add to {{{2}}} (the middle coefficient).



So the two numbers {{{-3}}} and {{{5}}} both multiply to {{{-15}}} <font size=4><b>and</b></font> add to {{{2}}}



Now replace the middle term {{{2x}}} with {{{-3x+5x}}}. Remember, {{{-3}}} and {{{5}}} add to {{{2}}}. So this shows us that {{{-3x+5x=2x}}}.



{{{3x^2+highlight(-3x+5x)-5}}} Replace the second term {{{2x}}} with {{{-3x+5x}}}.



{{{(3x^2-3x)+(5x-5)}}} Group the terms into two pairs.



{{{3x(x-1)+(5x-5)}}} Factor out the GCF {{{3x}}} from the first group.



{{{3x(x-1)+5(x-1)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(3x+5)(x-1)}}} Combine like terms. Or factor out the common term {{{x-1}}}



--------------------------------------------------



So {{{4x(3x^2+2x-5)}}} then factors further to {{{4x(3x+5)(x-1)}}}



===============================================================



Answer:



So {{{12x^3+8x^2-20x}}} completely factors to {{{4x(3x+5)(x-1)}}}.



In other words, {{{12x^3+8x^2-20x=4x(3x+5)(x-1)}}}.



Note: you can check the answer by expanding {{{4x(3x+5)(x-1)}}} to get {{{12x^3+8x^2-20x}}} or by graphing the original expression and the answer (the two graphs should be identical).