Question 640408


Looking at the expression {{{4x^2-20x+25}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{-20}}}, and the last term is {{{25}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{25}}} to get {{{(4)(25)=100}}}.



Now the question is: what two whole numbers multiply to {{{100}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-20}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{100}}} (the previous product).



Factors of {{{100}}}:

1,2,4,5,10,20,25,50,100

-1,-2,-4,-5,-10,-20,-25,-50,-100



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{100}}}.

1*100 = 100
2*50 = 100
4*25 = 100
5*20 = 100
10*10 = 100
(-1)*(-100) = 100
(-2)*(-50) = 100
(-4)*(-25) = 100
(-5)*(-20) = 100
(-10)*(-10) = 100


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-20}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>100</font></td><td  align="center"><font color=black>1+100=101</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>50</font></td><td  align="center"><font color=black>2+50=52</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>4+25=29</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>5+20=25</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>10+10=20</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-100</font></td><td  align="center"><font color=black>-1+(-100)=-101</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-50</font></td><td  align="center"><font color=black>-2+(-50)=-52</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>-4+(-25)=-29</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-5+(-20)=-25</font></td></tr><tr><td  align="center"><font color=red>-10</font></td><td  align="center"><font color=red>-10</font></td><td  align="center"><font color=red>-10+(-10)=-20</font></td></tr></table>



From the table, we can see that the two numbers {{{-10}}} and {{{-10}}} add to {{{-20}}} (the middle coefficient).



So the two numbers {{{-10}}} and {{{-10}}} both multiply to {{{100}}} <font size=4><b>and</b></font> add to {{{-20}}}



Now replace the middle term {{{-20x}}} with {{{-10x-10x}}}. Remember, {{{-10}}} and {{{-10}}} add to {{{-20}}}. So this shows us that {{{-10x-10x=-20x}}}.



{{{4x^2+highlight(-10x-10x)+25}}} Replace the second term {{{-20x}}} with {{{-10x-10x}}}.



{{{(4x^2-10x)+(-10x+25)}}} Group the terms into two pairs.



{{{2x(2x-5)+(-10x+25)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(2x-5)-5(2x-5)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x-5)(2x-5)}}} Combine like terms. Or factor out the common term {{{2x-5}}}



{{{(2x-5)^2}}} Condense the terms.



===============================================================



Answer:



So {{{4x^2-20x+25}}} factors to {{{(2x-5)^2}}}.



In other words, {{{4x^2-20x+25=(2x-5)^2}}}.



Note: you can check the answer by expanding {{{(2x-5)^2}}} to get {{{4x^2-20x+25}}} or by graphing the original expression and the answer (the two graphs should be identical).