Question 639000
For {{{x^2+8x-22 = 0}}}


a = 1


b = 8


c = -22



<img src="http://latex.codecogs.com/gif.latex?x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}">


<img src="http://latex.codecogs.com/gif.latex?x = \frac{-(8)\pm\sqrt{(8)^2-4(1)(-22)}}{2(1)}">


<img src="http://latex.codecogs.com/gif.latex?x = \frac{-8\pm\sqrt{64-(-88)}}{2}">


<img src="http://latex.codecogs.com/gif.latex?x = \frac{-8\pm\sqrt{152}}{2}">


<img src="http://latex.codecogs.com/gif.latex?x = \frac{-8+\sqrt{152}}{2} \ \text{or} \ x = \frac{-8-\sqrt{152}}{2}">


<img src="http://latex.codecogs.com/gif.latex?x = \frac{-8+2\sqrt{38}}{2} \ \text{or} \ x = \frac{-8-2\sqrt{38}}{2}">


<img src="http://latex.codecogs.com/gif.latex?x \approx 2.16441 \ \text{or} \ x \approx -10.16441">


=======================================================

Answer:


So the exact solutions are 

<img src="http://latex.codecogs.com/gif.latex?x = \frac{-8+2\sqrt{38}}{2} \ \text{or} \ x = \frac{-8-2\sqrt{38}}{2}">

and the approximate solutions are 

<img src="http://latex.codecogs.com/gif.latex?x \approx 2.16441 \ \text{or} \ x \approx -10.16441">