Question 638998

Note: *[Tex \LARGE \left(x_{1}, y_{1}\right)] is the first point *[Tex \LARGE \left(-4,-3\right)]. So this means that {{{x[1]=-4}}} and {{{y[1]=-3}}}.

Also, *[Tex \LARGE \left(x_{2}, y_{2}\right)] is the second point *[Tex \LARGE \left(-6,7\right)].  So this means that {{{x[2]=-6}}} and {{{y[2]=7}}}.



{{{m=(y[2]-y[1])/(x[2]-x[1])}}} Start with the slope formula.



{{{m=(7--3)/(-6--4)}}} Plug in {{{y[2]=7}}}, {{{y[1]=-3}}}, {{{x[2]=-6}}}, and {{{x[1]=-4}}}



{{{m=(10)/(-6--4)}}} Subtract {{{-3}}} from {{{7}}} to get {{{10}}}



{{{m=(10)/(-2)}}} Subtract {{{-4}}} from {{{-6}}} to get {{{-2}}}



{{{m=-5}}} Reduce



So the slope of the line that goes through the points *[Tex \LARGE \left(-4,-3\right)] and *[Tex \LARGE \left(-6,7\right)] is {{{m=-5}}}