Question 638472
solve log3(x) + log5(4x)=2
---------------
{{{log(3,x) + log(5,4x) = 2}}}
{{{log(3,x) + log(5,x) + log(4) = 2}}}
{{{log(3,x) + log(5,x) = 2 - log(4)}}}
{{{log(x)/log(3) + log(x)/log(5) = 2 - log(4)}}}
{{{log(x)*(1/log(3) + 1/log(5)) = 2 - log(4)}}}
{{{log(x)*(log(3) + log(5))/(log(3)*log(5)) = 2 - log(4)}}}
{{{log(x) = (2-log(4))(log(3)*log(5))/(log(3)+log(5))}}}

{{{log(x) = (log(100)-log(4))(log(3)*log(5))/log(15))}}}
{{{log(x) = (log(25)*log(3)*log(5))/log(15))}}}
-----------
x = 10^RHS
x =~2.4911568