Question 636160
<font face="Times New Roman" size="+2">


If your two equations are in slope intercept form:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y\ =\ m_1x\ +\ b_1]
*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y\ =\ m_2x\ +\ b_2]


then set the two RHSs equal to each other -- after all, we want *[tex \LARGE y] to equal *[tex \LARGE y] since we are looking for the point that satisfies both equations, right?


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ m_1x\ +\ b_1\ =\ m_2x\ +\ b_2]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ (m_1\ -\ m_2)x\ =\ b_2\ -\ b_1]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x\ =\ \frac{b_2\ -\ b_1}{m_1\ -\ m_2}]


Then substitute back into either original equation:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y\ =\ m_1\left(\frac{b_2\ -\ b_1}{m_1\ -\ m_2}\right)\ +\ b_1]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>