Question 635220
<font face="Times New Roman" size="+2">


The vertex of the parabola that is the graph of *[tex \LARGE \rho(x)\ =\ ax^2\ +\ bx\ +\ c] is at the point *[tex \LARGE \left(x_v,\,y_v\right)] where:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x_v\ =\ \frac{-b}{2a}]


and


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y_v\ =\ \rho\left(x_v\right)\ =\ a\left(x_v\right)^2\ +\ b\left(x_v\right)\ +\ c]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>