Question 634899
Factoring is usually the easier way to solve these. But not everything factors, including this equation. So we will resort to the Quadratic Formula:
{{{x = (-(4) +- sqrt((4)^2-4(1)(2)))/2(1)}}}
Now we simplify:
{{{x = (-(4) +- sqrt(16-4(1)(2)))/2(1)}}}
{{{x = (-(4) +- sqrt(16-8))/2(1)}}}
{{{x = (-(4) +- sqrt(8))/2(1)}}}
{{{x = (-4 +- sqrt(8))/2}}}
{{{x = (-4 +- sqrt(4*2))/2}}}
{{{x = (-4 +- sqrt(4)*sqrt(2))/2}}}
{{{x = (-4 +- 2*sqrt(2))/2}}}
{{{x = (2(-2 +- sqrt(2)))/2}}}
{{{x = (cross(2)(-2 +- sqrt(2)))/cross(2)}}}
{{{x = -2 +- sqrt(2)}}}
which is short for:
{{{x = -2 + sqrt(2)}}} or {{{x = -2 - sqrt(2)}}}