Question 632382


First let's find the slope of the line through the points *[Tex \LARGE \left(-3,4\right)] and *[Tex \LARGE \left(3,-2\right)]



Note: *[Tex \LARGE \left(x_{1}, y_{1}\right)] is the first point *[Tex \LARGE \left(-3,4\right)]. So this means that {{{x[1]=-3}}} and {{{y[1]=4}}}.

Also, *[Tex \LARGE \left(x_{2}, y_{2}\right)] is the second point *[Tex \LARGE \left(3,-2\right)].  So this means that {{{x[2]=3}}} and {{{y[2]=-2}}}.



{{{m=(y[2]-y[1])/(x[2]-x[1])}}} Start with the slope formula.



{{{m=(-2-4)/(3--3)}}} Plug in {{{y[2]=-2}}}, {{{y[1]=4}}}, {{{x[2]=3}}}, and {{{x[1]=-3}}}



{{{m=(-6)/(3--3)}}} Subtract {{{4}}} from {{{-2}}} to get {{{-6}}}



{{{m=(-6)/(6)}}} Subtract {{{-3}}} from {{{3}}} to get {{{6}}}



{{{m=-1}}} Reduce



So the slope of the line that goes through the points *[Tex \LARGE \left(-3,4\right)] and *[Tex \LARGE \left(3,-2\right)] is {{{m=-1}}}



Now let's use the point slope formula:



{{{y-y[1]=m(x-x[1])}}} Start with the point slope formula



{{{y-4=-1(x--3)}}} Plug in {{{m=-1}}}, {{{x[1]=-3}}}, and {{{y[1]=4}}}



{{{y-4=-1(x+3)}}} Rewrite {{{x--3}}} as {{{x+3}}}



{{{y-4=-1x+-1(3)}}} Distribute



{{{y-4=-1x-3}}} Multiply



{{{y=-1x-3+4}}} Add 4 to both sides. 



{{{y=-1x+1}}} Combine like terms. 



{{{y=-x+1}}} Simplify



So the equation that goes through the points *[Tex \LARGE \left(-3,4\right)] and *[Tex \LARGE \left(3,-2\right)] is {{{y=-x+1}}}



 Notice how the graph of {{{y=-x+1}}} goes through the points *[Tex \LARGE \left(-3,4\right)] and *[Tex \LARGE \left(3,-2\right)]. So this visually verifies our answer.

 {{{drawing( 500, 500, -10, 10, -10, 10,
 graph( 500, 500, -10, 10, -10, 10,-x+1),
 circle(-3,4,0.08),
 circle(-3,4,0.10),
 circle(-3,4,0.12),
 circle(3,-2,0.08),
 circle(3,-2,0.10),
 circle(3,-2,0.12)
 )}}} Graph of {{{y=-x+1}}} through the points *[Tex \LARGE \left(-3,4\right)] and *[Tex \LARGE \left(3,-2\right)]


<font color="red">--------------------------------------------------------------------------------------------------------------</font>
If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim
<font color="red">--------------------------------------------------------------------------------------------------------------</font>