Question 631253
Rationalizing first, then simplifying:
{{{sqrt(60)/sqrt(33)=(sqrt(60)/sqrt(33))*(sqrt(33)/sqrt(33))=(sqrt(60)*sqrt(33))/(sqrt(33)*sqrt(33))=sqrt(60*33)/33=sqrt(4*5*3*3*11)/33=sqrt(4*9*55)/33=sqrt(4)*sqrt(3)*sqrt(55)/33=2*3*sqrt(55)/33=2sqrt(55)/11}}}
 
Probably easier:
{{{sqrt(60)/sqrt(33)=sqrt(60/33)=sqrt(20/11)=sqrt(20*11/11^2)=sqrt(20*11)/sqrt(11^2)=sqrt(20*11)/11=sqrt(4*5*11)/11=sqrt(4)*sqrt(55)/11=2sqrt(55)/11}}}