Question 631179
Note: *[Tex \LARGE \left(x_{1}, y_{1}\right)] is the first point *[Tex \LARGE \left(-4,-18\right)]. So this means that {{{x[1]=-4}}} and {{{y[1]=-18}}}.

Also, *[Tex \LARGE \left(x_{2}, y_{2}\right)] is the second point *[Tex \LARGE \left(-20,-19\right)].  So this means that {{{x[2]=-20}}} and {{{y[2]=-19}}}.



{{{m=(y[2]-y[1])/(x[2]-x[1])}}} Start with the slope formula.



{{{m=(-19--18)/(-20--4)}}} Plug in {{{y[2]=-19}}}, {{{y[1]=-18}}}, {{{x[2]=-20}}}, and {{{x[1]=-4}}}



{{{m=(-1)/(-20--4)}}} Subtract {{{-18}}} from {{{-19}}} to get {{{-1}}}



{{{m=(-1)/(-16)}}} Subtract {{{-4}}} from {{{-20}}} to get {{{-16}}}



{{{m=1/16}}} Reduce



So the slope of the line that goes through the points *[Tex \LARGE \left(-4,-18\right)] and *[Tex \LARGE \left(-20,-19\right)] is {{{m=1/16}}}


<font color="red">--------------------------------------------------------------------------------------------------------------</font>
If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim
<font color="red">--------------------------------------------------------------------------------------------------------------</font>