Question 629843


{{{4x^3-10x^2-50x}}} Start with the given expression.



{{{2x(2x^2-5x-25)}}} Factor out the GCF {{{2x}}}.



Now let's try to factor the inner expression {{{2x^2-5x-25}}}



---------------------------------------------------------------



Looking at the expression {{{2x^2-5x-25}}}, we can see that the first coefficient is {{{2}}}, the second coefficient is {{{-5}}}, and the last term is {{{-25}}}.



Now multiply the first coefficient {{{2}}} by the last term {{{-25}}} to get {{{(2)(-25)=-50}}}.



Now the question is: what two whole numbers multiply to {{{-50}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-5}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-50}}} (the previous product).



Factors of {{{-50}}}:

1,2,5,10,25,50

-1,-2,-5,-10,-25,-50



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-50}}}.

1*(-50) = -50
2*(-25) = -50
5*(-10) = -50
(-1)*(50) = -50
(-2)*(25) = -50
(-5)*(10) = -50


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-5}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-50</font></td><td  align="center"><font color=black>1+(-50)=-49</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>2+(-25)=-23</font></td></tr><tr><td  align="center"><font color=red>5</font></td><td  align="center"><font color=red>-10</font></td><td  align="center"><font color=red>5+(-10)=-5</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>50</font></td><td  align="center"><font color=black>-1+50=49</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>-2+25=23</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-5+10=5</font></td></tr></table>



From the table, we can see that the two numbers {{{5}}} and {{{-10}}} add to {{{-5}}} (the middle coefficient).



So the two numbers {{{5}}} and {{{-10}}} both multiply to {{{-50}}} <font size=4><b>and</b></font> add to {{{-5}}}



Now replace the middle term {{{-5x}}} with {{{5x-10x}}}. Remember, {{{5}}} and {{{-10}}} add to {{{-5}}}. So this shows us that {{{5x-10x=-5x}}}.



{{{2x^2+highlight(5x-10x)-25}}} Replace the second term {{{-5x}}} with {{{5x-10x}}}.



{{{(2x^2+5x)+(-10x-25)}}} Group the terms into two pairs.



{{{x(2x+5)+(-10x-25)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(2x+5)-5(2x+5)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-5)(2x+5)}}} Combine like terms. Or factor out the common term {{{2x+5}}}



--------------------------------------------------



So {{{2x(2x^2-5x-25)}}} then factors further to {{{2x(x-5)(2x+5)}}}



===============================================================



Answer:



So {{{4x^3-10x^2-50x}}} completely factors to {{{2x(x-5)(2x+5)}}}.



In other words, {{{4x^3-10x^2-50x=2x(x-5)(2x+5)}}}.



Note: you can check the answer by expanding {{{2x(x-5)(2x+5)}}} to get {{{4x^3-10x^2-50x}}} or by graphing the original expression and the answer (the two graphs should be identical).


<font color="red">--------------------------------------------------------------------------------------------------------------</font>
If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim
<font color="red">--------------------------------------------------------------------------------------------------------------</font>