Question 57841
Two formulas I'm going to use are:
{{{highlight(u^3-v^3=(u-v)(u^2+uv+v^2))}}}
{{{highlight(a^2-b^2=(a+b)(a-b))}}}
:
what is the simplyfied answer of 
{{{((8y^3 -27)/(64y^3-1))}}}/{{{((4y^2-9)/(16y^2+4y+1))}}}  Flip the second fraction and multiply.
{{{((8y^3-27)/(64y^3-1))*((16y^2+4y+1)/(4y^2-9))}}}  Factor using formulas
{{{((2y-3)(4y^2+6y+9)/((4y-1)(16y^2+4y+1)))*((16y^2+4y+1)/((2y+3)(2y-3)))}}}  Cancel matching numerators and denominators:
{{{(cross((2y-3))(4y^2+6y+9)/((4y-1)*cross((16y^2+6y+9))))*(cross((16y^2+4y+1))/((2y+3)*cross((2y-3))))}}}  Multiply what's left:
{{{highlight((4y^2+6y+9)/((4y-1)(2y+3)))}}}
Happy Calculating!!!