Question 627816
Let {{{x = 72t^2 + t}}}
{{{x^2 - 74x + 73 = 0}}}
{{{(x - 1)(x - 73) = 0}}}
x = 1 or x = 73
Therefore
{{{72t^2 + t = 1}}} or {{{72t^2 + t = 73}}}
Solve {{{72t^2 + t = 1}}}
      {{{72t^2 + t - 1 = 0}}}
      {{{(8t + 1)(9t - 1) = 0}}}
      t = -1/8, 1/9
Solve {{{72t^2 + t = 73}}}
      {{{72t^2 + t - 73 = 0}}}
      {{{(72t + 73)(t - 1) = 0}}}
      t = -73/72, 1

Answer: The solutions are -1/8, 1/9, -73/72, 1