Question 626329
Without a calculator, show that  {{{ 1/ log( 2, pi ) }}} + {{{ 1/log( 5, pi ) }}} > 2.
-------------
{{{ 1/ log( 2, pi ) }}} + {{{ 1/log( 5, pi ) }}}
= {{{ 1/(ln(pi)/ln(2))}}} + {{{1/(ln(pi)/ln(5))}}}
= {{{ln(2)/ln(pi)}}} + {{{ln(5)/ln(pi)}}}
= {{{ln(10)/ln(pi)}}}
= {{{log(10)/log(pi)}}}
= 1/log(pi)
-------------
{{{pi < sqrt(10)}}}
--> 1/(<0.5)
 --> > 2