Question 57681
Simplify the complex fraction.

{{{(3/(a+3)+1)/(9/(a-3)+1)}}}  The LCD of the top and the bottom is (x+3)(a-3)
{{{(a+3)(a-3)(3/(a+3)+1)/((a+3)(a-3)(9/(a-3)+1))}}}
{{{(3*cross((a+3))*(a-3)/cross((a+3))+(a+3)(a-3))/(9(a+3)*cross((a-3))/cross(a-3)+(a+3)(a-3))}}}
{{{(3(a-3)+(a+3)(a-3))/(9(a+3)+(a+3)(a-3))}}}
{{{(3a-9+a^2-9)/(9a+27+a^2-9)}}}  Put in descending order
{{{(a^2+3a-18)/(a^2+9a+18)}}}  Factor
{{{(a+6)(a-3)/((a+6)(a+3))}}}
{{{(cross((a+6))(a-3))/(cross((a+6))(a+3))}}}
{{{highlight((a-3)/(a+3))}}}  
Happy Calculating!!!