Question 624249
I'm assuming you meant to write 3x^2+13<font color="red"><b>x</b></font>-10



Looking at the expression {{{3x^2+13x-10}}}, we can see that the first coefficient is {{{3}}}, the second coefficient is {{{13}}}, and the last term is {{{-10}}}.



Now multiply the first coefficient {{{3}}} by the last term {{{-10}}} to get {{{(3)(-10)=-30}}}.



Now the question is: what two whole numbers multiply to {{{-30}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{13}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-30}}} (the previous product).



Factors of {{{-30}}}:

1,2,3,5,6,10,15,30

-1,-2,-3,-5,-6,-10,-15,-30



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-30}}}.

1*(-30) = -30
2*(-15) = -30
3*(-10) = -30
5*(-6) = -30
(-1)*(30) = -30
(-2)*(15) = -30
(-3)*(10) = -30
(-5)*(6) = -30


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{13}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>1+(-30)=-29</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>2+(-15)=-13</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>3+(-10)=-7</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>5+(-6)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-1+30=29</font></td></tr><tr><td  align="center"><font color=red>-2</font></td><td  align="center"><font color=red>15</font></td><td  align="center"><font color=red>-2+15=13</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-3+10=7</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-5+6=1</font></td></tr></table>



From the table, we can see that the two numbers {{{-2}}} and {{{15}}} add to {{{13}}} (the middle coefficient).



So the two numbers {{{-2}}} and {{{15}}} both multiply to {{{-30}}} <font size=4><b>and</b></font> add to {{{13}}}



Now replace the middle term {{{13x}}} with {{{-2x+15x}}}. Remember, {{{-2}}} and {{{15}}} add to {{{13}}}. So this shows us that {{{-2x+15x=13x}}}.



{{{3x^2+highlight(-2x+15x)-10}}} Replace the second term {{{13x}}} with {{{-2x+15x}}}.



{{{(3x^2-2x)+(15x-10)}}} Group the terms into two pairs.



{{{x(3x-2)+(15x-10)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(3x-2)+5(3x-2)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+5)(3x-2)}}} Combine like terms. Or factor out the common term {{{3x-2}}}



===============================================================



Answer:



So {{{3x^2+13x-10}}} factors to {{{(x+5)(3x-2)}}}.



In other words, {{{3x^2+13x-10=(x+5)(3x-2)}}}.



Note: you can check the answer by expanding {{{(x+5)(3x-2)}}} to get {{{3x^2+13x-10}}} or by graphing the original expression and the answer (the two graphs should be identical).



<font color="red">--------------------------------------------------------------------------------------------------------------</font>
If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim
<font color="red">--------------------------------------------------------------------------------------------------------------</font>