Question 57555
1. Find the complement of a 51 ° 49' angle.
{{{highlight(a)}}}. 38 ° 11' 
b. 128 ° 11' 
c. 38 ° 51' 
d. 128 ° 51' 
:
{{{90-51^o}}}49'={{{89^o}}}60'-{{{51^o}}}49'={{{38^o}}}11'
:
2. Find the supplement of the radian measure {{{7*(pi)/8}}}. Express your answer in terms of {{{pi}}} .
a. {{{13(pi)/8}}} 
{{{highlight(b)}}}. {{{pi/8}}} 
c. {{{9(pi)/8}}} 
d. {{{5(pi)/8}}} 
:
{{{pi-7(pi)/8}}}
{{{8(pi)/8-7(pi)/8=(pi)/8}}}
:
3. Classify 725 ° by quadrant, and state the positive angle with measure less than 360 ° that is coterminal with it.
a. Quadrant II, 95 ° 
{{{highlight(b)}}}. Quadrant I, 5 ° 
c. Quadrant IV, 275 ° 
d. Quadrant III, 185 ° 
:
725-2(360)=5
:
4. Convert 105 ° to exact radian measure.
a. {{{6(pi)/7}}} 
b. {{{12(pi)/7}}} 
c. {{{7(pi)/6}}} 
{{{highlight(d)}}}. {{{7(pi)/12}}} 
:
{{{105(pi/180)=(105/180)*pi}}}
{{{((15*7)/(15*12))*pi=7(pi)/12}}}
:
5. Convert the radian measure {{{7(pi)/5}}} to exact degree measure.
a. 128.5 ° 
{{{highlight(b)}}}. 252 ° 
c. 504 ° 
d. 126 ° 
:
{{{(7(pi)/5)*(180/pi)=7*36=252}}}
:

6. Convert the radian measure 1.6 to degree measure to the nearest hundredth of a degree.
{{{highlight(a)}}}. 91.67 ° 
b. 288 ° 
c. 183.35 ° 
d. 97.40 ° 
:
{{{1.6(180/(pi))=91.67324722}}}
:
7. Find the measure in radians of the central angle of a circle with radius 4 inches and arc length 8 inches.
a. 32 
b. 0.5 
{{{highlight(c)}}}. 2 
d. 2 {{{pi}}}; 
:
{{{s=r(theta)}}}, where s=arc length, r=radius, and {{{theta}}}=central angle in radians.
{{{8=4(theta)}}}
{{{8/4=4(theta)/4}}}
{{{2=(theta)}}}
Happy Calculating!!!