Question 622680
1. {{{x^2+8x+16}}} Factor:
{{{(x+4)(x+4)}}} 
Yes because the given quadratic expression is a perfect square which can be shown by factoring.
2. {{{3x^2+8x+4}}} Factor:
{{{(3x+2)(x+2)}}} Yes! The sides are {{{(3x+2)}}} and {{{(x+2)}}} and the garden is not a square because the sides are not equal.
3. Is {{{x^2-y^2 = (x-y)^2}}}?
To find out, expand the right side:
{{{(x-y)^2 = (x-y)(x-y)}}}={{{x^2-2xy+y^2}}} 
{{{x^2-y^2 = (x+y)(x-y)}}}
So {{{(x-y)^2 <> x^2-y^2}}}
4.
a) {{{105^2-5^2 = 11025-25}}}={{{11000}}}
b) {{{(105-5)^2 = (100)^2}}}={{{10000}}}
5. Use the identity:
{{{(a^2-b^2) = (a-b)(a+b)}}} and if a = 105 and b = 5, then...
{{{105^2-5^2 = (105-5)(105+5)}}}={{{(100)(110)=11000}}}