Question 621898


{{{28x^2+38x-6}}} Start with the given expression.



{{{2(14x^2+19x-3)}}} Factor out the GCF {{{2}}}.



Now let's try to factor the inner expression {{{14x^2+19x-3}}}



---------------------------------------------------------------



Looking at the expression {{{14x^2+19x-3}}}, we can see that the first coefficient is {{{14}}}, the second coefficient is {{{19}}}, and the last term is {{{-3}}}.



Now multiply the first coefficient {{{14}}} by the last term {{{-3}}} to get {{{(14)(-3)=-42}}}.



Now the question is: what two whole numbers multiply to {{{-42}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{19}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-42}}} (the previous product).



Factors of {{{-42}}}:

1,2,3,6,7,14,21,42

-1,-2,-3,-6,-7,-14,-21,-42



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-42}}}.

1*(-42) = -42
2*(-21) = -42
3*(-14) = -42
6*(-7) = -42
(-1)*(42) = -42
(-2)*(21) = -42
(-3)*(14) = -42
(-6)*(7) = -42


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{19}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>1+(-42)=-41</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>2+(-21)=-19</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>3+(-14)=-11</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>6+(-7)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>-1+42=41</font></td></tr><tr><td  align="center"><font color=red>-2</font></td><td  align="center"><font color=red>21</font></td><td  align="center"><font color=red>-2+21=19</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-3+14=11</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-6+7=1</font></td></tr></table>



From the table, we can see that the two numbers {{{-2}}} and {{{21}}} add to {{{19}}} (the middle coefficient).



So the two numbers {{{-2}}} and {{{21}}} both multiply to {{{-42}}} <font size=4><b>and</b></font> add to {{{19}}}



Now replace the middle term {{{19x}}} with {{{-2x+21x}}}. Remember, {{{-2}}} and {{{21}}} add to {{{19}}}. So this shows us that {{{-2x+21x=19x}}}.



{{{14x^2+highlight(-2x+21x)-3}}} Replace the second term {{{19x}}} with {{{-2x+21x}}}.



{{{(14x^2-2x)+(21x-3)}}} Group the terms into two pairs.



{{{2x(7x-1)+(21x-3)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(7x-1)+3(7x-1)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x+3)(7x-1)}}} Combine like terms. Or factor out the common term {{{7x-1}}}



--------------------------------------------------



So {{{2(14x^2+19x-3)}}} then factors further to {{{2(2x+3)(7x-1)}}}



===============================================================



Answer:



So {{{28x^2+38x-6}}} completely factors to {{{2(2x+3)(7x-1)}}}.



In other words, {{{28x^2+38x-6=2(2x+3)(7x-1)}}}.



Note: you can check the answer by expanding {{{2(2x+3)(7x-1)}}} to get {{{28x^2+38x-6}}} or by graphing the original expression and the answer (the two graphs should be identical).