Question 618448

Note: *[Tex \LARGE \left(x_{1}, y_{1}\right)] is the first point *[Tex \LARGE \left(6,17\right)]. So this means that {{{x[1]=6}}} and {{{y[1]=17}}}.

Also, *[Tex \LARGE \left(x_{2}, y_{2}\right)] is the second point *[Tex \LARGE \left(-17,11\right)].  So this means that {{{x[2]=-17}}} and {{{y[2]=11}}}.



{{{m=(y[2]-y[1])/(x[2]-x[1])}}} Start with the slope formula.



{{{m=(11-17)/(-17-6)}}} Plug in {{{y[2]=11}}}, {{{y[1]=17}}}, {{{x[2]=-17}}}, and {{{x[1]=6}}}



{{{m=(-6)/(-17-6)}}} Subtract {{{17}}} from {{{11}}} to get {{{-6}}}



{{{m=(-6)/(-23)}}} Subtract {{{6}}} from {{{-17}}} to get {{{-23}}}



{{{m=6/23}}} Reduce



So the slope of the line that goes through the points *[Tex \LARGE \left(6,17\right)] and *[Tex \LARGE \left(-17,11\right)] is {{{m=6/23}}}