Question 618104
A line through(2 , 1)meets the curve x squared - 2x - y=3 at A(-2 , 5) and at B.Find the coordinates of B.
**
Equation of line: y=mx+b, m=slope, b=y-intercept
m=∆y/∆x=(5-1)/(-2-2)=-4/4=-1
equation: y=-x+b
solving for b using coordinates of one of given points ((2,1)
1=-2+b
b=3
equation of line: y=-x+3
..
Equation of curve: x^2-2x-y=3
Substitute equation of line for y
x^2-2x-(-x+3)=3
x^2-2x+x-3=3
x^2-x-6=0
(x-3)(x+2)=0
..
x+2=0
x=-2
y=-x+3=2+3=5
This confirms given point of intersection at A: (-2,5)
..
x-3=0
x=3
y=-x+3=3-3=0
coordinates of B, point of intersection: (3,0)
see graph below as a visual check:
{{{ graph( 300, 300, -10, 10, -10, 10, x^2-2x-3,-x+3) }}}