Question 57052
I am having a difficult time understanding what you mean.  We usually use ^ to indicate raising something to a power. a^m={{{a^m}}}.  If I didn't interpret your problems correctly, let me know.
:
The rules that we are going to use are:
{{{highlight(a^(-m)=1/a^m)}}}
{{{highlight(1/(a^(-m))=a^m)}}}
{{{highlight((a^m*b^n)^t=a^(mt)*b^(nt))}}}
{{{highlight(a^m/a^n=a^(m-n)=1/a^(n-m))}}}
{{{highlight(a^m/b^n)^(-t)=(b^n/a^m)^t)}}}
Keep in mind that denominators cannot equal 0, so there are somre restricitons to these rules.
:
29. evaluate.
{{{y^2-7}}}, when y = -10
{{{(-10)^2-7}}}
{{{(-10)(-10)-7}}}
{{{100-7}}}
{{{highlight(93)}}}
:
48. Express using posotive exponents. then simplify.
{{{(1/h)^(-n)}}}
{{{(h/1)^n}}}
{{{highlight(h^n)}}}
:
89. divide and simplify.
{{{(8x)^4/(8x)^10}}}
{{{1/(8x)^(10-4)}}}
{{{1/(8x)^6}}}
{{{1/(8^6x^6)}}}
{{{highlight(1/262144x^6)}}}
:
98. {{{x^(-9)/(x^(-3))}}}
{{{x^3/x^9}}}
{{{1/(x^(9-3))}}}
{{{highlight(1/x^6)}}}
:
Happy Calculating!!!