Question 616008


{{{-10t^5+15t^4+9t^3}}} Start with the given expression.



{{{-1t^3(10t^2-15t-9)}}} Factor out the GCF {{{-1t^3}}}.



Now let's try to factor the inner expression {{{10t^2-15t-9}}}



---------------------------------------------------------------



Looking at the expression {{{10t^2-15t-9}}}, we can see that the first coefficient is {{{10}}}, the second coefficient is {{{-15}}}, and the last term is {{{-9}}}.



Now multiply the first coefficient {{{10}}} by the last term {{{-9}}} to get {{{(10)(-9)=-90}}}.



Now the question is: what two whole numbers multiply to {{{-90}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-15}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-90}}} (the previous product).



Factors of {{{-90}}}:

1,2,3,5,6,9,10,15,18,30,45,90

-1,-2,-3,-5,-6,-9,-10,-15,-18,-30,-45,-90



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-90}}}.

1*(-90) = -90
2*(-45) = -90
3*(-30) = -90
5*(-18) = -90
6*(-15) = -90
9*(-10) = -90
(-1)*(90) = -90
(-2)*(45) = -90
(-3)*(30) = -90
(-5)*(18) = -90
(-6)*(15) = -90
(-9)*(10) = -90


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-15}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-90</font></td><td  align="center"><font color=black>1+(-90)=-89</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>2+(-45)=-43</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>3+(-30)=-27</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>5+(-18)=-13</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>6+(-15)=-9</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>9+(-10)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>90</font></td><td  align="center"><font color=black>-1+90=89</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>-2+45=43</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-3+30=27</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>-5+18=13</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-6+15=9</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-9+10=1</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{-15}}}. So {{{10t^2-15t-9}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{-10t^5+15t^4+9t^3}}} simply factors to {{{-t^3(10t^2-15t-9)}}}



In other words, {{{-10t^5+15t^4+9t^3=-t^3(10t^2-15t-9)}}}.