Question 615983


{{{24r^2-6r-45}}} Start with the given expression.



{{{3(8r^2-2r-15)}}} Factor out the GCF {{{3}}}.



Now let's try to factor the inner expression {{{8r^2-2r-15}}}



---------------------------------------------------------------



Looking at the expression {{{8r^2-2r-15}}}, we can see that the first coefficient is {{{8}}}, the second coefficient is {{{-2}}}, and the last term is {{{-15}}}.



Now multiply the first coefficient {{{8}}} by the last term {{{-15}}} to get {{{(8)(-15)=-120}}}.



Now the question is: what two whole numbers multiply to {{{-120}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-2}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-120}}} (the previous product).



Factors of {{{-120}}}:

1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120

-1,-2,-3,-4,-5,-6,-8,-10,-12,-15,-20,-24,-30,-40,-60,-120



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-120}}}.

1*(-120) = -120
2*(-60) = -120
3*(-40) = -120
4*(-30) = -120
5*(-24) = -120
6*(-20) = -120
8*(-15) = -120
10*(-12) = -120
(-1)*(120) = -120
(-2)*(60) = -120
(-3)*(40) = -120
(-4)*(30) = -120
(-5)*(24) = -120
(-6)*(20) = -120
(-8)*(15) = -120
(-10)*(12) = -120


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-2}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-120</font></td><td  align="center"><font color=black>1+(-120)=-119</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>2+(-60)=-58</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>3+(-40)=-37</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>4+(-30)=-26</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>5+(-24)=-19</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>6+(-20)=-14</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>8+(-15)=-7</font></td></tr><tr><td  align="center"><font color=red>10</font></td><td  align="center"><font color=red>-12</font></td><td  align="center"><font color=red>10+(-12)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>120</font></td><td  align="center"><font color=black>-1+120=119</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>-2+60=58</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>-3+40=37</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-4+30=26</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>-5+24=19</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-6+20=14</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-8+15=7</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-10+12=2</font></td></tr></table>



From the table, we can see that the two numbers {{{10}}} and {{{-12}}} add to {{{-2}}} (the middle coefficient).



So the two numbers {{{10}}} and {{{-12}}} both multiply to {{{-120}}} <font size=4><b>and</b></font> add to {{{-2}}}



Now replace the middle term {{{-2r}}} with {{{10r-12r}}}. Remember, {{{10}}} and {{{-12}}} add to {{{-2}}}. So this shows us that {{{10r-12r=-2r}}}.



{{{8r^2+highlight(10r-12r)-15}}} Replace the second term {{{-2r}}} with {{{10r-12r}}}.



{{{(8r^2+10r)+(-12r-15)}}} Group the terms into two pairs.



{{{2r(4r+5)+(-12r-15)}}} Factor out the GCF {{{2r}}} from the first group.



{{{2r(4r+5)-3(4r+5)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2r-3)(4r+5)}}} Combine like terms. Or factor out the common term {{{4r+5}}}



--------------------------------------------------



So {{{3(8r^2-2r-15)}}} then factors further to {{{3(2r-3)(4r+5)}}}



===============================================================



Answer:



So {{{24r^2-6r-45}}} completely factors to {{{3(2r-3)(4r+5)}}}.



In other words, {{{24r^2-6r-45=3(2r-3)(4r+5)}}}.



Note: you can check the answer by expanding {{{3(2r-3)(4r+5)}}} to get {{{24r^2-6r-45}}} or by graphing the original expression and the answer (the two graphs should be identical).