Question 615200


Looking at the expression {{{8x^2y-27xy+9}}}, we can see that the first coefficient is {{{8}}}, the second coefficient is {{{-27}}}, and the last coefficient is {{{9}}}.



Now multiply the first coefficient {{{8}}} by the last coefficient {{{9}}} to get {{{(8)(9)=72}}}.



Now the question is: what two whole numbers multiply to {{{72}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-27}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{72}}} (the previous product).



Factors of {{{72}}}:

1,2,3,4,6,8,9,12,18,24,36,72

-1,-2,-3,-4,-6,-8,-9,-12,-18,-24,-36,-72



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{72}}}.

1*72 = 72
2*36 = 72
3*24 = 72
4*18 = 72
6*12 = 72
8*9 = 72
(-1)*(-72) = 72
(-2)*(-36) = 72
(-3)*(-24) = 72
(-4)*(-18) = 72
(-6)*(-12) = 72
(-8)*(-9) = 72


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-27}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>72</font></td><td  align="center"><font color=black>1+72=73</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>2+36=38</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>3+24=27</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>4+18=22</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>6+12=18</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>8+9=17</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-72</font></td><td  align="center"><font color=black>-1+(-72)=-73</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-2+(-36)=-38</font></td></tr><tr><td  align="center"><font color=red>-3</font></td><td  align="center"><font color=red>-24</font></td><td  align="center"><font color=red>-3+(-24)=-27</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-4+(-18)=-22</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-6+(-12)=-18</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-8+(-9)=-17</font></td></tr></table>



From the table, we can see that the two numbers {{{-3}}} and {{{-24}}} add to {{{-27}}} (the middle coefficient).



So the two numbers {{{-3}}} and {{{-24}}} both multiply to {{{72}}} <font size=4><b>and</b></font> add to {{{-27}}}



Now replace the middle term {{{-27xy}}} with {{{-3xy-24xy}}}. Remember, {{{-3}}} and {{{-24}}} add to {{{-27}}}. So this shows us that {{{-3xy-24xy=-27xy}}}.



{{{8x^2y+highlight(-3xy-24xy)+9}}} Replace the second term {{{-27xy}}} with {{{-3xy-24xy}}}.



{{{(8x^2y-3xy)+(-24xy+9)}}} Group the terms into two pairs.



{{{xy(8x-3)+(-24xy+9)}}} Factor out the GCF {{{xy}}} from the first group.



{{{xy(8x-3)-3(8xy-3)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



===============================================================



Answer:



So {{{8x^2y-27xy+9}}} factors to {{{(xy-3)(8x-3)}}}.



In other words, {{{8x^2y-27xy+9=(xy-3)(8x-3)}}}.



Note: you can check the answer by expanding {{{(xy-3)(8x-3)}}} to get {{{8x^2y-27xy+9}}} or by graphing the original expression and the answer (the two graphs should be identical).