Question 614548
take the log of both sides and then separate the 2(3^x) by the log(m)+log(n)=log(mn) rule.


{{{ 2(3^x) = 7(5^x) }}} 
log(2(3^x))=log(7(5^x))
log(2)+log(3^x)=log(7)+log(5^x)
log(2)+xlog(3)=log(7)+xlog(5)
xlog(3)-xlog(5)=log(7)-log(2)
x(log(3)-log(5))=log(7)-log(2)
x=(log(7)-log(2))/(log(3)-log(5))
x=-2.452427 <--i used a calculator


x=(log(7)-log(2))/(log(3)-log(5)) can be rewritten using the rule log(m)-log(n)=log(m/n)
x=log(7/2)/log(3/5)