Question 613124
<font face="Times New Roman" size="+2">


Presuming *[tex \LARGE a\ >\ b]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{(x\ -\ h)^2}{a^2}\ +\ \frac{(y\ -\ k)^2}{b^2}\ =\ 1]


Has a semi-major axis of *[tex \LARGE a], hence a major axis that measures *[tex \LARGE 2a].  It has a semi-minor axis of *[tex \LARGE b], hence a minor axis that measures *[tex \LARGE 2b].


The foci are at *[tex \LARGE (h\,+\,c,k)] and *[tex \LARGE (h\,-\,c,k)] where *[tex \LARGE c\ =\ \sqrt{a^2\ -\ b^2}].  Note that for this particular ellipse, *[tex \LARGE h\ =\ 0] and *[tex \LARGE k\ =\ 0]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>