Question 610313
Looking at the expression {{{64a^2-16ab+b^2}}}, we can see that the first coefficient is {{{64}}}, the second coefficient is {{{-16}}}, and the last coefficient is {{{1}}}.



Now multiply the first coefficient {{{64}}} by the last coefficient {{{1}}} to get {{{(64)(1)=64}}}.



Now the question is: what two whole numbers multiply to {{{64}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-16}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{64}}} (the previous product).



Factors of {{{64}}}:

1,2,4,8,16,32,64

-1,-2,-4,-8,-16,-32,-64



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{64}}}.

1*64 = 64
2*32 = 64
4*16 = 64
8*8 = 64
(-1)*(-64) = 64
(-2)*(-32) = 64
(-4)*(-16) = 64
(-8)*(-8) = 64


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-16}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>64</font></td><td  align="center"><font color=black>1+64=65</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>32</font></td><td  align="center"><font color=black>2+32=34</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>16</font></td><td  align="center"><font color=black>4+16=20</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>8+8=16</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-64</font></td><td  align="center"><font color=black>-1+(-64)=-65</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-32</font></td><td  align="center"><font color=black>-2+(-32)=-34</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-16</font></td><td  align="center"><font color=black>-4+(-16)=-20</font></td></tr><tr><td  align="center"><font color=red>-8</font></td><td  align="center"><font color=red>-8</font></td><td  align="center"><font color=red>-8+(-8)=-16</font></td></tr></table>



From the table, we can see that the two numbers {{{-8}}} and {{{-8}}} add to {{{-16}}} (the middle coefficient).



So the two numbers {{{-8}}} and {{{-8}}} both multiply to {{{64}}} <font size=4><b>and</b></font> add to {{{-16}}}



Now replace the middle term {{{-16ab}}} with {{{-8ab-8ab}}}. Remember, {{{-8}}} and {{{-8}}} add to {{{-16}}}. So this shows us that {{{-8ab-8ab=-16ab}}}.



{{{64a^2+highlight(-8ab-8ab)+b^2}}} Replace the second term {{{-16ab}}} with {{{-8ab-8ab}}}.



{{{(64a^2-8ab)+(-8ab+b^2)}}} Group the terms into two pairs.



{{{8a(8a-b)+(-8ab+b^2)}}} Factor out the GCF {{{8a}}} from the first group.



{{{8a(8a-b)-b(8a-b)}}} Factor out the {{{-b}}} from the second group.



{{{(8a-b)(8a-b)}}} Factor out {{{8a-b}}} from the entire expression.


===============================================================



Answer:



So {{{64a^2-16ab+b^2}}} factors to {{{(8a-b)(8a-b)}}}.



In other words, {{{64a^2-16ab+b^2=(8a-b)(8a-b)}}} for all values of 'a' and 'b'.



Note: you can check the answer by expanding {{{(8a-b)(8a-b)}}} to get {{{64a^2-16ab+b^2}}} back again or by graphing the original expression and the answer (the two graphs should be identical).