Question 610312
Looking at the expression {{{81x^2-126xy+49y^2}}}, we can see that the first coefficient is {{{81}}}, the second coefficient is {{{-126}}}, and the last coefficient is {{{49}}}.



Now multiply the first coefficient {{{81}}} by the last coefficient {{{49}}} to get {{{(81)(49)=3969}}}.



Now the question is: what two whole numbers multiply to {{{3969}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-126}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{3969}}} (the previous product).



Factors of {{{3969}}}:

1,3,7,9,21,27,49,63,81,147,189,441,567,1323,3969

-1,-3,-7,-9,-21,-27,-49,-63,-81,-147,-189,-441,-567,-1323,-3969



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{3969}}}.

1*3969 = 3969
3*1323 = 3969
7*567 = 3969
9*441 = 3969
21*189 = 3969
27*147 = 3969
49*81 = 3969
63*63 = 3969
(-1)*(-3969) = 3969
(-3)*(-1323) = 3969
(-7)*(-567) = 3969
(-9)*(-441) = 3969
(-21)*(-189) = 3969
(-27)*(-147) = 3969
(-49)*(-81) = 3969
(-63)*(-63) = 3969


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-126}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>3969</font></td><td  align="center"><font color=black>1+3969=3970</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>1323</font></td><td  align="center"><font color=black>3+1323=1326</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>567</font></td><td  align="center"><font color=black>7+567=574</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>441</font></td><td  align="center"><font color=black>9+441=450</font></td></tr><tr><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>189</font></td><td  align="center"><font color=black>21+189=210</font></td></tr><tr><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>147</font></td><td  align="center"><font color=black>27+147=174</font></td></tr><tr><td  align="center"><font color=black>49</font></td><td  align="center"><font color=black>81</font></td><td  align="center"><font color=black>49+81=130</font></td></tr><tr><td  align="center"><font color=black>63</font></td><td  align="center"><font color=black>63</font></td><td  align="center"><font color=black>63+63=126</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-3969</font></td><td  align="center"><font color=black>-1+(-3969)=-3970</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-1323</font></td><td  align="center"><font color=black>-3+(-1323)=-1326</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-567</font></td><td  align="center"><font color=black>-7+(-567)=-574</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-441</font></td><td  align="center"><font color=black>-9+(-441)=-450</font></td></tr><tr><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>-189</font></td><td  align="center"><font color=black>-21+(-189)=-210</font></td></tr><tr><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>-147</font></td><td  align="center"><font color=black>-27+(-147)=-174</font></td></tr><tr><td  align="center"><font color=black>-49</font></td><td  align="center"><font color=black>-81</font></td><td  align="center"><font color=black>-49+(-81)=-130</font></td></tr><tr><td  align="center"><font color=red>-63</font></td><td  align="center"><font color=red>-63</font></td><td  align="center"><font color=red>-63+(-63)=-126</font></td></tr></table>



From the table, we can see that the two numbers {{{-63}}} and {{{-63}}} add to {{{-126}}} (the middle coefficient).



So the two numbers {{{-63}}} and {{{-63}}} both multiply to {{{3969}}} <font size=4><b>and</b></font> add to {{{-126}}}



Now replace the middle term {{{-126xy}}} with {{{-63xy-63xy}}}. Remember, {{{-63}}} and {{{-63}}} add to {{{-126}}}. So this shows us that {{{-63xy-63xy=-126xy}}}.



{{{81x^2+highlight(-63xy-63xy)+49y^2}}} Replace the second term {{{-126xy}}} with {{{-63xy-63xy}}}.



{{{(81x^2-63xy)+(-63xy+49y^2)}}} Group the terms into two pairs.



{{{9x(9x-7y)+(-63xy+49y^2)}}} Factor out the GCF {{{9x}}} from the first group.



{{{9x(9x-7y)-7y(9x-7y)}}} Factor out the{{{-7y}}} from the second group.



{{{(9x-7y)(9x-7y)}}} Factor out the{{{9x-7y}}} from the entire expression.



===============================================================



Answer:



So {{{81x^2-126xy+49y^2}}} completely factors to {{{(9x-7y)(9x-7y)}}}



In other words, {{{81x^2-126xy+49y^2=(9x-7y)(9x-7y)}}} for all values of x and y.



Note: you can check the answer by expanding {{{(9x-7y)(9x-7y)}}} to get {{{81x^2-126xy+49y^2}}} back again or by graphing the original expression and the answer (the two graphs should be identical).