Question 610025
solve for y:
1/x=3(1/y^2+1/z^2)
-------------
{{{1/(3x) = 1/y^2 + 1/z^2}}}
{{{1/y^2 = 1/(3x) -  1/z^2}}}
{{{1/y^2 = (z^2 - 3x)/(3xz^2)}}}
{{{y^2 = 3xz^2/(z^2 - 3x)}}}
{{{y = sqrt(3xz^2/(z^2 - 3x))}}}
------------
Answer given is:
 {{{y=sqrt(1/(1/3x-1/z^2))}}}
 {{{y=sqrt(1/((-z^2 + 3x)/3xz^2))}}}
 {{{y=sqrt(3xz^2/((3x-z^2)))}}}
Same answer
-----------
{{{y=sqrt(3xz^2*(3x-z^2))/(3x-z^2))}}}
{{{y=z*sqrt(3x*(3x-z^2))/(3x-z^2))}}} is better