Question 610032


{{{40x^3+34x^2-20x}}} Start with the given expression.



{{{2x(20x^2+17x-10)}}} Factor out the GCF {{{2x}}}.



Now let's try to factor the inner expression {{{20x^2+17x-10}}}



---------------------------------------------------------------



Looking at the expression {{{20x^2+17x-10}}}, we can see that the first coefficient is {{{20}}}, the second coefficient is {{{17}}}, and the last term is {{{-10}}}.



Now multiply the first coefficient {{{20}}} by the last term {{{-10}}} to get {{{(20)(-10)=-200}}}.



Now the question is: what two whole numbers multiply to {{{-200}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{17}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-200}}} (the previous product).



Factors of {{{-200}}}:

1,2,4,5,8,10,20,25,40,50,100,200

-1,-2,-4,-5,-8,-10,-20,-25,-40,-50,-100,-200



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-200}}}.

1*(-200) = -200
2*(-100) = -200
4*(-50) = -200
5*(-40) = -200
8*(-25) = -200
10*(-20) = -200
(-1)*(200) = -200
(-2)*(100) = -200
(-4)*(50) = -200
(-5)*(40) = -200
(-8)*(25) = -200
(-10)*(20) = -200


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{17}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-200</font></td><td  align="center"><font color=black>1+(-200)=-199</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-100</font></td><td  align="center"><font color=black>2+(-100)=-98</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-50</font></td><td  align="center"><font color=black>4+(-50)=-46</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>5+(-40)=-35</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>8+(-25)=-17</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>10+(-20)=-10</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>200</font></td><td  align="center"><font color=black>-1+200=199</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>100</font></td><td  align="center"><font color=black>-2+100=98</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>50</font></td><td  align="center"><font color=black>-4+50=46</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>-5+40=35</font></td></tr><tr><td  align="center"><font color=red>-8</font></td><td  align="center"><font color=red>25</font></td><td  align="center"><font color=red>-8+25=17</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>-10+20=10</font></td></tr></table>



From the table, we can see that the two numbers {{{-8}}} and {{{25}}} add to {{{17}}} (the middle coefficient).



So the two numbers {{{-8}}} and {{{25}}} both multiply to {{{-200}}} <font size=4><b>and</b></font> add to {{{17}}}



Now replace the middle term {{{17x}}} with {{{-8x+25x}}}. Remember, {{{-8}}} and {{{25}}} add to {{{17}}}. So this shows us that {{{-8x+25x=17x}}}.



{{{20x^2+highlight(-8x+25x)-10}}} Replace the second term {{{17x}}} with {{{-8x+25x}}}.



{{{(20x^2-8x)+(25x-10)}}} Group the terms into two pairs.



{{{4x(5x-2)+(25x-10)}}} Factor out the GCF {{{4x}}} from the first group.



{{{4x(5x-2)+5(5x-2)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(4x+5)(5x-2)}}} Combine like terms. Or factor out the common term {{{5x-2}}}



--------------------------------------------------



So {{{2x(20x^2+17x-10)}}} then factors further to {{{2x(4x+5)(5x-2)}}}



===============================================================



Answer:



So {{{40x^3+34x^2-20x}}} completely factors to {{{2x(4x+5)(5x-2)}}}.



In other words, {{{40x^3+34x^2-20x=2x(4x+5)(5x-2)}}}.



Note: you can check the answer by expanding {{{2x(4x+5)(5x-2)}}} to get {{{40x^3+34x^2-20x}}} or by graphing the original expression and the answer (the two graphs should be identical).


<font color="red">--------------------------------------------------------------------------------------------------------------</font>
If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim
<font color="red">--------------------------------------------------------------------------------------------------------------</font>