Question 609785
I'll help you factor this. Once the factorization is done, I'll let you take over.



Looking at the expression {{{x^2-21x+108}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-21}}}, and the last term is {{{108}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{108}}} to get {{{(1)(108)=108}}}.



Now the question is: what two whole numbers multiply to {{{108}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-21}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{108}}} (the previous product).



Factors of {{{108}}}:

1,2,3,4,6,9,12,18,27,36,54,108

-1,-2,-3,-4,-6,-9,-12,-18,-27,-36,-54,-108



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{108}}}.

1*108 = 108
2*54 = 108
3*36 = 108
4*27 = 108
6*18 = 108
9*12 = 108
(-1)*(-108) = 108
(-2)*(-54) = 108
(-3)*(-36) = 108
(-4)*(-27) = 108
(-6)*(-18) = 108
(-9)*(-12) = 108


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-21}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>108</font></td><td  align="center"><font color=black>1+108=109</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>54</font></td><td  align="center"><font color=black>2+54=56</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>3+36=39</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>4+27=31</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>6+18=24</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>9+12=21</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-108</font></td><td  align="center"><font color=black>-1+(-108)=-109</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-54</font></td><td  align="center"><font color=black>-2+(-54)=-56</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-3+(-36)=-39</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>-4+(-27)=-31</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-6+(-18)=-24</font></td></tr><tr><td  align="center"><font color=red>-9</font></td><td  align="center"><font color=red>-12</font></td><td  align="center"><font color=red>-9+(-12)=-21</font></td></tr></table>



From the table, we can see that the two numbers {{{-9}}} and {{{-12}}} add to {{{-21}}} (the middle coefficient).



So the two numbers {{{-9}}} and {{{-12}}} both multiply to {{{108}}} <font size=4><b>and</b></font> add to {{{-21}}}



Now replace the middle term {{{-21x}}} with {{{-9x-12x}}}. Remember, {{{-9}}} and {{{-12}}} add to {{{-21}}}. So this shows us that {{{-9x-12x=-21x}}}.



{{{x^2+highlight(-9x-12x)+108}}} Replace the second term {{{-21x}}} with {{{-9x-12x}}}.



{{{(x^2-9x)+(-12x+108)}}} Group the terms into two pairs.



{{{x(x-9)+(-12x+108)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x-9)-12(x-9)}}} Factor out {{{12}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-12)(x-9)}}} Combine like terms. Or factor out the common term {{{x-9}}}



===============================================================



Answer:



So {{{x^2-21x+108}}} factors to {{{(x-12)(x-9)}}}.



In other words, {{{x^2-21x+108=(x-12)(x-9)}}}.



Note: you can check the answer by expanding {{{(x-12)(x-9)}}} to get {{{x^2-21x+108}}} or by graphing the original expression and the answer (the two graphs should be identical).



So this means {{{x^2-21x+108=0}}} turns into {{{(x-12)(x-9)=0}}}

<font color="red">--------------------------------------------------------------------------------------------------------------</font>
If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim
<font color="red">--------------------------------------------------------------------------------------------------------------</font>