Question 607337
  <pre><font face = "Tohoma" size = 3 color = "indigo"><b> 
Hi,
Rewrite 2 log(5x) + 4 log(3x) - 2 log(45x) as one simplified logarithm.
   log (5x)^2(3x)^4/(45x)^2 = log x^4    |Note: 25·81/2025 = 1

*[tex \large \ \ \ \ \ \ \ log_b(x) \ = \ y \ \ \Rightarrow\ \ b^y = x]
*[tex \large\ \ nlog_bx = log_b(x^n) ] ***
*[tex \large\ \ log_bx + log_by = log_b(xy) ]***
*[tex \large\ \ log_bx - log_by = log_b(x/y) ]***
*[tex \large\ \ log_b1 = 0]
*[tex \large\ \ log_bb = 1]