Question 606063
Let <img src="http://latex.codecogs.com/gif.latex?\LARGE x = \log_{\frac{1}{3}}\left(9\right)" title="x" />


Convert this equation to exponential form to get {{{(1/3)^x=9}}}. Now let's solve for x



{{{(1/3)^x=9}}}


{{{(3^(-1))^x=3^2}}}


{{{3^(-1*x)=3^2}}}


{{{3^(-x)=3^2}}}


Since the bases are equal (to 3), the exponents must be equal. So {{{-x=2}}} or {{{x=-2}}}


So the solution is {{{x=-2}}}


Since we let <img src="http://latex.codecogs.com/gif.latex?\LARGE x = \log_{\frac{1}{3}}\left(9\right)" title="x" /> at the top of the problem, we can say that



<img src="http://latex.codecogs.com/gif.latex?\LARGE \text{\color{red}Answer:} \ \color{blue}\boxed{\log_{\frac{1}{3}}\left(9\right) = \color{red} -2}" title="x" />


Note: you can use the change of base formula to get the same answer of -2.


<font color="red">--------------------------------------------------------------------------------------------------------------</font>
If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim
<font color="red">--------------------------------------------------------------------------------------------------------------</font>