Question 604156
It looks like you want to factor this.





Looking at the expression {{{3d^2-17d+20}}}, we can see that the first coefficient is {{{3}}}, the second coefficient is {{{-17}}}, and the last term is {{{20}}}.



Now multiply the first coefficient {{{3}}} by the last term {{{20}}} to get {{{(3)(20)=60}}}.



Now the question is: what two whole numbers multiply to {{{60}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-17}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{60}}} (the previous product).



Factors of {{{60}}}:

1,2,3,4,5,6,10,12,15,20,30,60

-1,-2,-3,-4,-5,-6,-10,-12,-15,-20,-30,-60



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{60}}}.

1*60 = 60
2*30 = 60
3*20 = 60
4*15 = 60
5*12 = 60
6*10 = 60
(-1)*(-60) = 60
(-2)*(-30) = 60
(-3)*(-20) = 60
(-4)*(-15) = 60
(-5)*(-12) = 60
(-6)*(-10) = 60


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-17}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>1+60=61</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>2+30=32</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>3+20=23</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>4+15=19</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>5+12=17</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>6+10=16</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>-1+(-60)=-61</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-2+(-30)=-32</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-3+(-20)=-23</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-4+(-15)=-19</font></td></tr><tr><td  align="center"><font color=red>-5</font></td><td  align="center"><font color=red>-12</font></td><td  align="center"><font color=red>-5+(-12)=-17</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-6+(-10)=-16</font></td></tr></table>



From the table, we can see that the two numbers {{{-5}}} and {{{-12}}} add to {{{-17}}} (the middle coefficient).



So the two numbers {{{-5}}} and {{{-12}}} both multiply to {{{60}}} <font size=4><b>and</b></font> add to {{{-17}}}



Now replace the middle term {{{-17d}}} with {{{-5d-12d}}}. Remember, {{{-5}}} and {{{-12}}} add to {{{-17}}}. So this shows us that {{{-5d-12d=-17d}}}.



{{{3d^2+highlight(-5d-12d)+20}}} Replace the second term {{{-17d}}} with {{{-5d-12d}}}.



{{{(3d^2-5d)+(-12d+20)}}} Group the terms into two pairs.



{{{d(3d-5)+(-12d+20)}}} Factor out the GCF {{{d}}} from the first group.



{{{d(3d-5)-4(3d-5)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(d-4)(3d-5)}}} Combine like terms. Or factor out the common term {{{3d-5}}}



===============================================================



Answer:



So {{{3d^2-17d+20}}} factors to {{{(d-4)(3d-5)}}}.



In other words, {{{3d^2-17d+20=(d-4)(3d-5)}}}.



Note: you can check the answer by expanding {{{(d-4)(3d-5)}}} to get {{{3d^2-17d+20}}} or by graphing the original expression and the answer (the two graphs should be identical).