Question 603677
<pre>
a<sub>n</sub> = a<sub>1</sub> + (n-1)·d

a<sub>58</sub> = 1 + (58-1)·d

3 = 1 + (57)·d

2 = 57d

{{{2/57}}} = d

So you start with 1, then add {{{2/57}}} and get {{{1&2/57}}}
and then add {{{2/57}}} to that and keep doing that and when
you get to the 58th term, it will be 3.  Here they all are:

1.  1
2.  {{{1&2/57}}}
3.  {{{1&4/57}}}
4.  {{{1&2/19}}}
5.  {{{1&8/57}}}
6.  {{{1&10/57}}}
7.  {{{1&4/19}}}
8.  {{{1&14/57}}}
9.  {{{1&16/57}}}
10.  {{{1&6/19}}}
11.  {{{1&20/57}}}
12.  {{{1&22/57}}}
13.  {{{1&8/19}}}
14.  {{{1&26/57}}}
15.  {{{1&28/57}}}
16.  {{{1&10/19}}}
17.  {{{1&32/57}}}
18.  {{{1&34/57}}}
19.  {{{1&12/19}}}
20.  {{{1&2/3}}}
21.  {{{1&40/57}}}
22.  {{{1&14/19}}}
23.  {{{1&44/57}}}
24.  {{{1&46/57}}}
25.  {{{1&16/19}}}
26.  {{{1&50/57}}}
27.  {{{1&52/57}}}
28.  {{{1&18/19}}}
29.  {{{1&56/57}}}
30.  {{{2&1/57}}}
31.  {{{2&1/19}}}
32.  {{{2&5/57}}}
33.  {{{2&7/57}}}
34.  {{{2&3/19}}}
35.  {{{2&11/57}}}
36.  {{{2&13/57}}}
37.  {{{2&5/19}}}
38.  {{{2&17/57}}}
39.  {{{2&1/3}}}
40.  {{{2&7/19}}}
41.  {{{2&23/57}}}
42.  {{{2&25/57}}}
43.  {{{2&9/19}}}
44.  {{{2&29/57}}}
45.  {{{2&31/57}}}
46.  {{{2&11/19}}}
47.  {{{2&35/57}}}
48.  {{{2&37/57}}}
49.  {{{2&13/19}}}
50.  {{{2&41/57}}}
51.  {{{2&43/57}}}
52.  {{{2&15/19}}}
53.  {{{2&47/57}}}
54.  {{{2&49/57}}}
55.  {{{2&17/19}}}
56.  {{{2&53/57}}}
57.  {{{2&55/57}}}
58.  3

Edwin</pre>