Question 603653
How does n=4 in the problem: sqrt(n)+6=sqrt(16n)?
--------
{{{sqrt(n)+6=sqrt(16n)}}}
{{{sqrt(4)+6=sqrt(16*4)}}}
{{{2+6=sqrt(64)}}}
8 = 8
================
sqrt(n)+6=sqrt(16n)

Square both sides

n + 12sqrt(n) + 36 = 16n

12sqrt(n) = 15n - 36

Square again

144n = 225n^2 - 1080n + 1296

25n^2 - 136n + 144 = 0

*[invoke solve_quadratic_equation 25,-136,144]