Question 602540
{{{(7x^3+5)(x^2+2)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(7x^3)+5)(highlight(x^2)+2)}}} Multiply the <font color="red">F</font>irst terms:{{{(7*x^3)*(x^2)=7*x^5}}}.



{{{(highlight(7x^3)+5)(x^2+highlight(2))}}} Multiply the <font color="red">O</font>uter terms:{{{(7*x^3)*(2)=14*x^3}}}.



{{{(7x^3+highlight(5))(highlight(x^2)+2)}}} Multiply the <font color="red">I</font>nner terms:{{{(5)*(x^2)=5*x^2}}}.



{{{(7x^3+highlight(5))(x^2+highlight(2))}}} Multiply the <font color="red">L</font>ast terms:{{{(5)*(2)=10}}}.



---------------------------------------------------

So we have the terms: {{{7*x^5}}}, {{{14*x^3}}}, {{{5*x^2}}}, {{{10}}} 



{{{7x^5+14x^3+5x^2+10}}}  Now add every term listed above to make a single expression.



So {{{(7x^3+5)(x^2+2)}}} FOILs to {{{7x^5+14x^3+5x^2+10}}}.



In other words, {{{(7x^3+5)(x^2+2)=7x^5+14x^3+5x^2+10}}} for all values of x.