Question 600724
It looks like you want to factor here.




Looking at the expression {{{2x^2-21x+40}}}, we can see that the first coefficient is {{{2}}}, the second coefficient is {{{-21}}}, and the last term is {{{40}}}.



Now multiply the first coefficient {{{2}}} by the last term {{{40}}} to get {{{(2)(40)=80}}}.



Now the question is: what two whole numbers multiply to {{{80}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-21}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{80}}} (the previous product).



Factors of {{{80}}}:

1,2,4,5,8,10,16,20,40,80

-1,-2,-4,-5,-8,-10,-16,-20,-40,-80



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{80}}}.

1*80 = 80
2*40 = 80
4*20 = 80
5*16 = 80
8*10 = 80
(-1)*(-80) = 80
(-2)*(-40) = 80
(-4)*(-20) = 80
(-5)*(-16) = 80
(-8)*(-10) = 80


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-21}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>80</font></td><td  align="center"><font color=black>1+80=81</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>40</font></td><td  align="center"><font color=black>2+40=42</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>4+20=24</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>16</font></td><td  align="center"><font color=black>5+16=21</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>8+10=18</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-80</font></td><td  align="center"><font color=black>-1+(-80)=-81</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-40</font></td><td  align="center"><font color=black>-2+(-40)=-42</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-4+(-20)=-24</font></td></tr><tr><td  align="center"><font color=red>-5</font></td><td  align="center"><font color=red>-16</font></td><td  align="center"><font color=red>-5+(-16)=-21</font></td></tr><tr><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-8+(-10)=-18</font></td></tr></table>



From the table, we can see that the two numbers {{{-5}}} and {{{-16}}} add to {{{-21}}} (the middle coefficient).



So the two numbers {{{-5}}} and {{{-16}}} both multiply to {{{80}}} <font size=4><b>and</b></font> add to {{{-21}}}



Now replace the middle term {{{-21x}}} with {{{-5x-16x}}}. Remember, {{{-5}}} and {{{-16}}} add to {{{-21}}}. So this shows us that {{{-5x-16x=-21x}}}.



{{{2x^2+highlight(-5x-16x)+40}}} Replace the second term {{{-21x}}} with {{{-5x-16x}}}.



{{{(2x^2-5x)+(-16x+40)}}} Group the terms into two pairs.



{{{x(2x-5)+(-16x+40)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(2x-5)-8(2x-5)}}} Factor out {{{8}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-8)(2x-5)}}} Combine like terms. Or factor out the common term {{{2x-5}}}



===============================================================



Answer:



So {{{2x^2-21x+40}}} factors to {{{(x-8)(2x-5)}}}.



In other words, {{{2x^2-21x+40=(x-8)(2x-5)}}}.



Note: you can check the answer by expanding {{{(x-8)(2x-5)}}} to get {{{2x^2-21x+40}}} or by graphing the original expression and the answer (the two graphs should be identical).