Question 600655
I'm assuming you want to factor this.




Looking at the expression {{{x^2+8x+16}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{8}}}, and the last term is {{{16}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{16}}} to get {{{(1)(16)=16}}}.



Now the question is: what two whole numbers multiply to {{{16}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{8}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{16}}} (the previous product).



Factors of {{{16}}}:

1,2,4,8,16

-1,-2,-4,-8,-16



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{16}}}.

1*16 = 16
2*8 = 16
4*4 = 16
(-1)*(-16) = 16
(-2)*(-8) = 16
(-4)*(-4) = 16


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{8}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>16</font></td><td  align="center"><font color=black>1+16=17</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>2+8=10</font></td></tr><tr><td  align="center"><font color=red>4</font></td><td  align="center"><font color=red>4</font></td><td  align="center"><font color=red>4+4=8</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-16</font></td><td  align="center"><font color=black>-1+(-16)=-17</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-2+(-8)=-10</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-4+(-4)=-8</font></td></tr></table>



From the table, we can see that the two numbers {{{4}}} and {{{4}}} add to {{{8}}} (the middle coefficient).



So the two numbers {{{4}}} and {{{4}}} both multiply to {{{16}}} <font size=4><b>and</b></font> add to {{{8}}}



Now replace the middle term {{{8x}}} with {{{4x+4x}}}. Remember, {{{4}}} and {{{4}}} add to {{{8}}}. So this shows us that {{{4x+4x=8x}}}.



{{{x^2+highlight(4x+4x)+16}}} Replace the second term {{{8x}}} with {{{4x+4x}}}.



{{{(x^2+4x)+(4x+16)}}} Group the terms into two pairs.



{{{x(x+4)+(4x+16)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+4)+4(x+4)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x+4)(x+4)}}} Combine like terms. Or factor out the common term {{{x+4}}}



{{{(x+4)^2}}} Condense the terms.



===============================================================



Answer:



So {{{x^2+8x+16}}} factors to {{{(x+4)^2}}}.



In other words, {{{x^2+8x+16=(x+4)^2}}}.



Note: you can check the answer by expanding {{{(x+4)^2}}} to get {{{x^2+8x+16}}} or by graphing the original expression and the answer (the two graphs should be identical).