Question 599740


Looking at the expression {{{b^2+16b+63}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{16}}}, and the last term is {{{63}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{63}}} to get {{{(1)(63)=63}}}.



Now the question is: what two whole numbers multiply to {{{63}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{16}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{63}}} (the previous product).



Factors of {{{63}}}:

1,3,7,9,21,63

-1,-3,-7,-9,-21,-63



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{63}}}.

1*63 = 63
3*21 = 63
7*9 = 63
(-1)*(-63) = 63
(-3)*(-21) = 63
(-7)*(-9) = 63


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{16}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>63</font></td><td  align="center"><font color=black>1+63=64</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>3+21=24</font></td></tr><tr><td  align="center"><font color=red>7</font></td><td  align="center"><font color=red>9</font></td><td  align="center"><font color=red>7+9=16</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-63</font></td><td  align="center"><font color=black>-1+(-63)=-64</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>-3+(-21)=-24</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-7+(-9)=-16</font></td></tr></table>



From the table, we can see that the two numbers {{{7}}} and {{{9}}} add to {{{16}}} (the middle coefficient).



So the two numbers {{{7}}} and {{{9}}} both multiply to {{{63}}} <font size=4><b>and</b></font> add to {{{16}}}



Now replace the middle term {{{16b}}} with {{{7b+9b}}}. Remember, {{{7}}} and {{{9}}} add to {{{16}}}. So this shows us that {{{7b+9b=16b}}}.



{{{b^2+highlight(7b+9b)+63}}} Replace the second term {{{16b}}} with {{{7b+9b}}}.



{{{(b^2+7b)+(9b+63)}}} Group the terms into two pairs.



{{{b(b+7)+(9b+63)}}} Factor out the GCF {{{b}}} from the first group.



{{{b(b+7)+9(b+7)}}} Factor out {{{9}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(b+9)(b+7)}}} Combine like terms. Or factor out the common term {{{b+7}}}



===============================================================



Answer:



So {{{b^2+16b+63}}} factors to {{{(b+9)(b+7)}}}.



In other words, {{{b^2+16b+63=(b+9)(b+7)}}}.



Note: you can check the answer by expanding {{{(b+9)(b+7)}}} to get {{{b^2+16b+63}}} or by graphing the original expression and the answer (the two graphs should be identical).